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Robot learning
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Autonomous Mobile Robots
Siegwart et al.

We are here today



Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡
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Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡
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Traditionally, it is cost, not reward. In general, different 
communities use different notation and conventions.

Finite horizon



Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐 𝑠𝑡

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡

Decision making problem:
𝐽∗ 𝑠0 = max

𝑎𝑡∈𝓐 𝑠𝑡 ,𝑡=0,1,…,𝑇−1
𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1
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Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐 𝑠𝑡

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡

Decision making problem:
𝐽∗ 𝑠0 = max

𝑎𝑡∈𝓐 𝑠𝑡 ,𝑡=0,1,…,𝑇−1
𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1
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Discrete-time assumption

Additive rewards assumption



Principle of optimality

It’s the key concept behind the dynamic programming approach.
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Suppose 𝐴 – 𝐵 – 𝐶 is the optimal 
path from 𝐴 to 𝐶.

First segment reward: 𝐽𝐴𝐵

Second segment reward: 𝐽𝐵𝐶

Optimal reward 𝐽𝐴𝐶
∗ = 𝐽𝐴𝐵 + 𝐽𝐵𝐶

𝐴

𝐵

𝐶𝐽𝐴𝐵

𝐽𝐵𝐶



Principle of optimality

If 𝐴 – 𝐵 – 𝐶 is the optimal path from 𝐴 to 𝐶, then 𝐵 – 𝐶 is the 
optimal path from 𝐵 to 𝐶.
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𝐴

𝐵

𝐶𝐽𝐴𝐵

𝐽𝐵𝐶



Principle of optimality

If 𝐴 – 𝐵 – 𝐶 is the optimal path from 𝐴 to 𝐶, then 𝐵 – 𝐶 is the 
optimal path from 𝐵 to 𝐶.
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𝐴

𝐵

𝐶
𝐽𝐵𝐷

𝐽𝐵𝐶

𝐷 𝐽𝐷𝐶

Proof: Suppose 𝐵 – 𝐷 – 𝐶 is the 
optimal path from 𝐵 to 𝐶. Then,

𝐽𝐵𝐷 + 𝐽𝐷𝐶 > 𝐽𝐵𝐶

and
𝐽𝐴𝐵 + 𝐽𝐵𝐷 + 𝐽𝐷𝐶 > 𝐽𝐴𝐵 + 𝐽𝐵𝐶 = 𝐽𝐴𝐶

∗

This is a contradiction.



Principle of optimality (deterministic)

Suppose 𝑎0
∗ , 𝑎1

∗ , … , 𝑎𝑇−1
∗  is an optimal solution to the decision 

making problem for an initial state 𝑠0
∗, and the systems evolves as 

𝑠0
∗, 𝑠1

∗, … , 𝑠𝑇
∗  for this initial state and action sequence.

Then, an optimal solution to the subproblem for moving from 
state 𝑠𝑡

∗ at time 𝑡 until time 𝑇 is 𝑎𝑡
∗, 𝑎𝑡+1

∗ , … , 𝑎𝑇−1
∗ .

Tail of an optimal solution = Optimal for the tail subproblem
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How to apply principal of optimality
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𝐴

𝐵

𝐶

𝐷

Goal: Go from 𝐴 to 𝐸.

Given: 𝐵 − 𝐸, 𝐶 − 𝐸 and 𝐷 − 𝐸 are the optimal 
paths to 𝐸 from 𝐵, 𝐶 and 𝐷, respectively.

Principle of optimality:

If 𝐴 − 𝐵 is the initial segment of the optimal 
path from 𝐴 to 𝐸, then 𝐵 − 𝐸 is the final 
segment of this path.

Then, we find the optimal path by comparing:

𝐽𝐴𝐵𝐸 = 𝐽𝐴𝐵 + 𝐽𝐵𝐸
∗

𝐽𝐴𝐶𝐸 = 𝐽𝐴𝐶 + 𝐽𝐶𝐸
∗

𝐽𝐴𝐷𝐸 = 𝐽𝐴𝐷 + 𝐽𝐷𝐸
∗

𝐸

𝐵

𝐶

𝐷



How to apply principal of optimality
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𝐸

𝐵

𝐶

𝐷

Start from the terminal state and go backward in time.

First, compute the optimal paths to 𝐸 from all possible 
previous states. The rewards of these paths are reward-to-go 
(sometimes called return) from those states.

Repeat this procedure backward in time until 𝑡 = 0.

“Life can only be understood backwards; 
but it must be lived forwards.”
- Søren Kierkegaard



Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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𝑟3 H = 1
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𝑟0 A, ↓ = 2
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅
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Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max
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∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 22

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3
𝐽0

∗ A =10



Comments

1- We discretized the time.

Otherwise, we would have to deal with differential equations:
ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

These are usually more difficult to solve. We will mostly focus on 
discrete-time problems in this course. Exception:

Safe and robust learning:
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Comments

2- We quantized the state and action spaces.

This allows us to loop over all states and actions.

Reinforcement learning can be used for continuous spaces, too!
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Comments

3- Dynamic programming gives the globally optimal solution!
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Comments

4- Constraints help decrease computational costs.

In our example, we did not loop over all states, and optimized 
over only the feasible actions.
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Comments

5- Curse of dimensionality: Computational complexity and 
memory complexity of dynamic programming increases with the 
size of the state space.

Size of the state space often increases exponentially with its 
dimensionality.
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Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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Decision making in stochastic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡 , or 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡 , 𝑎𝑡

Policies:  𝜋 = 𝜋0, 𝜋1, … , 𝜋𝑇−1  where 𝑎𝑡 = 𝜋𝑡(𝑠𝑡)

Expected total reward:

𝐽𝜋 𝑠0 = 𝔼𝑤0,𝑤1,…𝑤𝑇−1
𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡, 𝜋𝑡 𝑠𝑡 , 𝑤𝑡  

Decision making problem: J∗ s0 = max
𝜋

 𝐽𝜋 𝑠0
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This is a random variable.

We introduce policies since 
we will find an optimal 
closed-loop policy.



Principle of optimality (stochastic)

Suppose 𝜋0
∗, 𝜋1

∗, … , 𝜋𝑇−1
∗  is an optimal solution to the decision 

making problem and assume state 𝑠𝑡 is reachable.

Then, an optimal solution to the subproblem for moving from 
state 𝑠𝑡 at time 𝑡 until time 𝑇 is 𝜋𝑡

∗, 𝜋𝑡+1
∗ , … , 𝜋𝑇−1

∗ .

Tail of optimal policies = Optimal for the tail subproblem
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Dynamic programming (stochastic)

𝐽𝑇 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

     𝐽𝑡 𝑠𝑡 = max
𝑎𝑡∈𝓐 𝑠𝑡

𝔼𝑤𝑡
𝑟𝑡 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡 + 𝐽𝑡+1(𝑓𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡)) , for all 𝑠𝑡 ∈ 𝓢

return 𝐽0 ⋅ , 𝐽1 ⋅ , … , 𝐽𝑇 ⋅
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Comments

DP in stochastic systems suffers from the same problems as DP in 
deterministic systems.

Also, modeling transitions perfectly is not always possible.
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Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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Markov decision processes (MDP)

MDPs are useful tools to model an agent’s interaction with its 
environment.

Reinforcement learning algorithms try to solve MDPs.

They have advantages over DP, as they only need a reward function.
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Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐
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We are looking at the infinite horizon case, 
since it makes stationary policies optimal.

We removed the dependence on the state, although 
that’s also creates interesting research questions. 



Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡
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Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions

Reward: Change in the score of the game

An example MDP
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Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013



Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

       (This is usually what we need to hand-design)

Another example MDP
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Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010



Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

Not that easy!
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This is a very naïve reward function. They instead learned the reward from expert 
demonstrations. We will cover this topic in a few weeks.



Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡
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Reinforcement learning tries to solve this problem.



Partially observable MDPs
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State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓞 → 𝓐 or 𝜋: 𝓞 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡, 𝜋 𝑜𝑡

Observation:  𝑜 ∈ 𝓞

Observation Model: 𝑜𝑡 ∼ 𝛺 ⋅∣ 𝑠𝑡



Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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Value functions

State value function:  𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎
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𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼𝑠′∼𝑃 ⋅∣𝑠,𝜋 𝑠 𝑉𝜋 𝑠′  

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∼𝑃 ⋅∣𝑠,𝑎 ,𝑎′∼𝜋 𝑠′ 𝑄𝜋 𝑠′, 𝑎′  

For any stationary policy, these have unique solutions.
Hint: Think of it as a system of linear equations.



Bellman equations

State value function:  𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎
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𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉∗ 𝑠′

This is just 𝑄∗(𝑠, 𝑎)!



Bellman equations

State value function:  𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎
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𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 max
𝑎′

𝑄∗ 𝑠′, 𝑎′



Value iteration

Idea: Take Bellman equation and iterate until it converges. It does 
converge because it is a contractive mapping.

𝑉0 𝑠 = 0 for all 𝑠 ∈ 𝓢

for 𝑘 = 0,1, … until convergence:

      for all 𝑠 ∈ 𝓢:

           𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉𝑘 𝑠′
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Each iteration is 𝑂 𝓢 2 𝓐 .



Value iteration

Idea: Take Bellman equation and iterate until it converges. It does 
converge because it is a contractive mapping.

𝑄0 𝑠, 𝑎 = 0 for all 𝑠 ∈ 𝓢, 𝑎 ∈ 𝓐

for 𝑘 = 0,1, … until convergence:

     for all 𝑠 ∈ 𝓢, 𝑎 ∈ 𝓐:

          𝑄𝑘+1 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 max
𝑎′∈𝓐

𝑄𝑘 𝑠′, 𝑎′
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Each iteration is 𝑂 𝓢 2 𝓐 2 .



Policy iteration

Initialize a random policy 𝜋0.

for 𝑘 = 0,1, … until convergence:

     Solve the following system for 𝑉𝜋𝑘:

          𝑉𝜋𝑘 𝑠 = 𝔼𝑎∼𝜋𝑘 𝑠 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋𝑘 𝑠′

     for all 𝑠 ∈ 𝓢:

          𝜋𝑘 𝑠 = arg max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉𝜋𝑘 𝑠′
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This is called policy evaluation.
It is 𝑂 𝓢 3 .

This is called policy improvement.
It is 𝑂 𝓢 2 𝓐 .



Value iteration vs policy iteration

• Both converge.

• Policy iteration requires more complex implementation.

• In practice, policy iteration usually converges faster.
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Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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We are still assuming we know 
the transition function.



Next time…

• Model-based reinforcement learning

• Model-free reinforcement learning
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