
Robot Learning
Reinforcement learning

So far…

CSCI 699: Robot Learning - Lecture 3 2

So far…

CSCI 699: Robot Learning - Lecture 3 3

Robot learning

CSCI 699: Robot Learning - Lecture 2 4
Autonomous Mobile Robots
Siegwart et al.

We are here today

Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 5

Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

CSCI 699: Robot Learning - Lecture 3 6

Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡

CSCI 699: Robot Learning - Lecture 3 7

Traditionally, it is cost, not reward. In general, different
communities use different notation and conventions.

Finite horizon

Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐 𝑠𝑡

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡

Decision making problem:
𝐽∗ 𝑠0 = max

𝑎𝑡∈𝓐 𝑠𝑡 ,𝑡=0,1,…,𝑇−1
𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1

CSCI 699: Robot Learning - Lecture 3 8

Decision making in deterministic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐 𝑠𝑡

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡

Total reward:

𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1 = 𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡

Decision making problem:
𝐽∗ 𝑠0 = max

𝑎𝑡∈𝓐 𝑠𝑡 ,𝑡=0,1,…,𝑇−1
𝐽 𝑠0; 𝑎0, … , 𝑎𝑇−1

CSCI 699: Robot Learning - Lecture 3 9

Discrete-time assumption

Additive rewards assumption

Principle of optimality

It’s the key concept behind the dynamic programming approach.

CSCI 699: Robot Learning - Lecture 3 10

Suppose 𝐴 – 𝐵 – 𝐶 is the optimal
path from 𝐴 to 𝐶.

First segment reward: 𝐽𝐴𝐵

Second segment reward: 𝐽𝐵𝐶

Optimal reward 𝐽𝐴𝐶
∗ = 𝐽𝐴𝐵 + 𝐽𝐵𝐶

𝐴

𝐵

𝐶𝐽𝐴𝐵

𝐽𝐵𝐶

Principle of optimality

If 𝐴 – 𝐵 – 𝐶 is the optimal path from 𝐴 to 𝐶, then 𝐵 – 𝐶 is the
optimal path from 𝐵 to 𝐶.

CSCI 699: Robot Learning - Lecture 3 11

𝐴

𝐵

𝐶𝐽𝐴𝐵

𝐽𝐵𝐶

Principle of optimality

If 𝐴 – 𝐵 – 𝐶 is the optimal path from 𝐴 to 𝐶, then 𝐵 – 𝐶 is the
optimal path from 𝐵 to 𝐶.

CSCI 699: Robot Learning - Lecture 3 12

𝐴

𝐵

𝐶
𝐽𝐵𝐷

𝐽𝐵𝐶

𝐷 𝐽𝐷𝐶

Proof: Suppose 𝐵 – 𝐷 – 𝐶 is the
optimal path from 𝐵 to 𝐶. Then,

𝐽𝐵𝐷 + 𝐽𝐷𝐶 > 𝐽𝐵𝐶

and
𝐽𝐴𝐵 + 𝐽𝐵𝐷 + 𝐽𝐷𝐶 > 𝐽𝐴𝐵 + 𝐽𝐵𝐶 = 𝐽𝐴𝐶

∗

This is a contradiction.

Principle of optimality (deterministic)

Suppose 𝑎0
∗ , 𝑎1

∗ , … , 𝑎𝑇−1
∗ is an optimal solution to the decision

making problem for an initial state 𝑠0
∗, and the systems evolves as

𝑠0
∗, 𝑠1

∗, … , 𝑠𝑇
∗ for this initial state and action sequence.

Then, an optimal solution to the subproblem for moving from
state 𝑠𝑡

∗ at time 𝑡 until time 𝑇 is 𝑎𝑡
∗, 𝑎𝑡+1

∗ , … , 𝑎𝑇−1
∗ .

Tail of an optimal solution = Optimal for the tail subproblem

CSCI 699: Robot Learning - Lecture 3 13

How to apply principal of optimality

CSCI 699: Robot Learning - Lecture 3 14

𝐴

𝐵

𝐶

𝐷

Goal: Go from 𝐴 to 𝐸.

Given: 𝐵 − 𝐸, 𝐶 − 𝐸 and 𝐷 − 𝐸 are the optimal
paths to 𝐸 from 𝐵, 𝐶 and 𝐷, respectively.

Principle of optimality:

If 𝐴 − 𝐵 is the initial segment of the optimal
path from 𝐴 to 𝐸, then 𝐵 − 𝐸 is the final
segment of this path.

Then, we find the optimal path by comparing:

𝐽𝐴𝐵𝐸 = 𝐽𝐴𝐵 + 𝐽𝐵𝐸
∗

𝐽𝐴𝐶𝐸 = 𝐽𝐴𝐶 + 𝐽𝐶𝐸
∗

𝐽𝐴𝐷𝐸 = 𝐽𝐴𝐷 + 𝐽𝐷𝐸
∗

𝐸

𝐵

𝐶

𝐷

How to apply principal of optimality

CSCI 699: Robot Learning - Lecture 3 15

𝐸

𝐵

𝐶

𝐷

Start from the terminal state and go backward in time.

First, compute the optimal paths to 𝐸 from all possible
previous states. The rewards of these paths are reward-to-go
(sometimes called return) from those states.

Repeat this procedure backward in time until 𝑡 = 0.

“Life can only be understood backwards;
but it must be lived forwards.”
- Søren Kierkegaard

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 16

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

4

1 2

3

−2

2

0

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 17

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3

𝐽3
∗ G = 3

𝐽3
∗ H = 1

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 18

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3

𝐽3
∗ G = 3

𝐽3
∗ H = 1

𝐽2
∗ D = −1

𝐽2
∗ E = 4

𝐽2
∗ F = 5

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 19

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3

𝐽2
∗ D = −1

𝐽2
∗ E = 4

𝐽2
∗ F = 5

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 20

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3

𝐽1
∗ B = 5

𝐽1
∗ C = 8

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 21

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3
𝐽0

∗ A =10

Dynamic programming (deterministic)

𝐽𝑇
∗ 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡
∗ 𝑠𝑡 = max

𝑎𝑡∈𝓐 𝑠𝑡

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝐽𝑡+1
∗ (𝑓𝑡(𝑠𝑡, 𝑎𝑡)), for all 𝑠𝑡 ∈ 𝓢

return 𝐽0
∗ ⋅ , 𝐽1

∗ ⋅ , … , 𝐽𝑇
∗ ⋅

CSCI 699: Robot Learning - Lecture 3 22

G

H

E

F

B

C

A

D

𝑟3 G = 3

𝑟3 H = 1

𝑟0 A, ↑ = 2

𝑟0 A, ↓ = 2

3

1

−5

0

−2

4

1 2

2

3
𝐽0

∗ A =10

Comments

1- We discretized the time.

Otherwise, we would have to deal with differential equations:
ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

These are usually more difficult to solve. We will mostly focus on
discrete-time problems in this course. Exception:

Safe and robust learning:

CSCI 699: Robot Learning - Lecture 3 23

Comments

2- We quantized the state and action spaces.

This allows us to loop over all states and actions.

Reinforcement learning can be used for continuous spaces, too!

CSCI 699: Robot Learning - Lecture 3 24

Comments

3- Dynamic programming gives the globally optimal solution!

CSCI 699: Robot Learning - Lecture 3 25

Comments

4- Constraints help decrease computational costs.

In our example, we did not loop over all states, and optimized
over only the feasible actions.

CSCI 699: Robot Learning - Lecture 3 26

G

H

E

F

B

C

A

D

Comments

5- Curse of dimensionality: Computational complexity and
memory complexity of dynamic programming increases with the
size of the state space.

Size of the state space often increases exponentially with its
dimensionality.

CSCI 699: Robot Learning - Lecture 3 27

Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 28

Decision making in stochastic systems

State: 𝑠𝑡 ∈ 𝓢

Action: 𝑎𝑡 ∈ 𝓐(𝑠𝑡)

Transition: 𝑠𝑡+1 = 𝑓𝑡 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡 , or 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡 , 𝑎𝑡

Policies: 𝜋 = 𝜋0, 𝜋1, … , 𝜋𝑇−1 where 𝑎𝑡 = 𝜋𝑡(𝑠𝑡)

Expected total reward:

𝐽𝜋 𝑠0 = 𝔼𝑤0,𝑤1,…𝑤𝑇−1
𝑟𝑇 𝑠𝑇 + ෍

𝑡=0

𝑇−1

𝑟𝑡 𝑠𝑡, 𝜋𝑡 𝑠𝑡 , 𝑤𝑡

Decision making problem: J∗ s0 = max
𝜋

 𝐽𝜋 𝑠0

CSCI 699: Robot Learning - Lecture 3 29

This is a random variable.

We introduce policies since
we will find an optimal
closed-loop policy.

Principle of optimality (stochastic)

Suppose 𝜋0
∗, 𝜋1

∗, … , 𝜋𝑇−1
∗ is an optimal solution to the decision

making problem and assume state 𝑠𝑡 is reachable.

Then, an optimal solution to the subproblem for moving from
state 𝑠𝑡 at time 𝑡 until time 𝑇 is 𝜋𝑡

∗, 𝜋𝑡+1
∗ , … , 𝜋𝑇−1

∗ .

Tail of optimal policies = Optimal for the tail subproblem

CSCI 699: Robot Learning - Lecture 3 30

Dynamic programming (stochastic)

𝐽𝑇 𝑠𝑇 = 𝑟𝑇 𝑠𝑇 , for all 𝑠𝑇 ∈ 𝓢

for 𝑡 = 𝑇 − 1 to 0 do

 𝐽𝑡 𝑠𝑡 = max
𝑎𝑡∈𝓐 𝑠𝑡

𝔼𝑤𝑡
𝑟𝑡 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡 + 𝐽𝑡+1(𝑓𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡)) , for all 𝑠𝑡 ∈ 𝓢

return 𝐽0 ⋅ , 𝐽1 ⋅ , … , 𝐽𝑇 ⋅

CSCI 699: Robot Learning - Lecture 3 31

Comments

DP in stochastic systems suffers from the same problems as DP in
deterministic systems.

Also, modeling transitions perfectly is not always possible.

CSCI 699: Robot Learning - Lecture 3 32

Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 33

Markov decision processes (MDP)

MDPs are useful tools to model an agent’s interaction with its
environment.

Reinforcement learning algorithms try to solve MDPs.

They have advantages over DP, as they only need a reward function.

CSCI 699: Robot Learning - Lecture 3 34

Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

CSCI 699: Robot Learning - Lecture 3 35

We are looking at the infinite horizon case,
since it makes stationary policies optimal.

We removed the dependence on the state, although
that’s also creates interesting research questions.

Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡

CSCI 699: Robot Learning - Lecture 3 36

Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions

Reward: Change in the score of the game

An example MDP

CSCI 699: Robot Learning - Lecture 3 37

Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

 (This is usually what we need to hand-design)

Another example MDP

CSCI 699: Robot Learning - Lecture 3 39

Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

Not that easy!

CSCI 699: Robot Learning - Lecture 3 41

This is a very naïve reward function. They instead learned the reward from expert
demonstrations. We will cover this topic in a few weeks.

Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡

CSCI 699: Robot Learning - Lecture 3 42

Reinforcement learning tries to solve this problem.

Partially observable MDPs

CSCI 699: Robot Learning - Lecture 3 43

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓞 → 𝓐 or 𝜋: 𝓞 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡, 𝜋 𝑜𝑡

Observation: 𝑜 ∈ 𝓞

Observation Model: 𝑜𝑡 ∼ 𝛺 ⋅∣ 𝑠𝑡

Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 44

Value functions

State value function: 𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎

CSCI 699: Robot Learning - Lecture 3 45

𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼𝑠′∼𝑃 ⋅∣𝑠,𝜋 𝑠 𝑉𝜋 𝑠′

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∼𝑃 ⋅∣𝑠,𝑎 ,𝑎′∼𝜋 𝑠′ 𝑄𝜋 𝑠′, 𝑎′

For any stationary policy, these have unique solutions.
Hint: Think of it as a system of linear equations.

Bellman equations

State value function: 𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎

CSCI 699: Robot Learning - Lecture 3 46

𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉∗ 𝑠′

This is just 𝑄∗(𝑠, 𝑎)!

Bellman equations

State value function: 𝑉𝜋 𝑠 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠

State-action value function: 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 σ𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑠0 = 𝑠, 𝑎0 = 𝑎

CSCI 699: Robot Learning - Lecture 3 47

𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝓢

𝑃 𝑠′ ∣ 𝑠, 𝑎 max
𝑎′

𝑄∗ 𝑠′, 𝑎′

Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

𝑉0 𝑠 = 0 for all 𝑠 ∈ 𝓢

for 𝑘 = 0,1, … until convergence:

 for all 𝑠 ∈ 𝓢:

 𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉𝑘 𝑠′

CSCI 699: Robot Learning - Lecture 3 48

Each iteration is 𝑂 𝓢 2 𝓐 .

Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

𝑄0 𝑠, 𝑎 = 0 for all 𝑠 ∈ 𝓢, 𝑎 ∈ 𝓐

for 𝑘 = 0,1, … until convergence:

 for all 𝑠 ∈ 𝓢, 𝑎 ∈ 𝓐:

 𝑄𝑘+1 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 max
𝑎′∈𝓐

𝑄𝑘 𝑠′, 𝑎′

CSCI 699: Robot Learning - Lecture 3 49

Each iteration is 𝑂 𝓢 2 𝓐 2 .

Policy iteration

Initialize a random policy 𝜋0.

for 𝑘 = 0,1, … until convergence:

 Solve the following system for 𝑉𝜋𝑘:

 𝑉𝜋𝑘 𝑠 = 𝔼𝑎∼𝜋𝑘 𝑠 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋𝑘 𝑠′

 for all 𝑠 ∈ 𝓢:

 𝜋𝑘 𝑠 = arg max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝓢 𝑃 𝑠′ ∣ 𝑠, 𝑎 𝑉𝜋𝑘 𝑠′

CSCI 699: Robot Learning - Lecture 3 50

This is called policy evaluation.
It is 𝑂 𝓢 3 .

This is called policy improvement.
It is 𝑂 𝓢 2 𝓐 .

Value iteration vs policy iteration

• Both converge.

• Policy iteration requires more complex implementation.

• In practice, policy iteration usually converges faster.

CSCI 699: Robot Learning - Lecture 3 51

Today…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 52

We are still assuming we know
the transition function.

Next time…

• Model-based reinforcement learning

• Model-free reinforcement learning

CSCI 699: Robot Learning - Lecture 3 53

	Slide 1: Robot Learning
	Slide 2: So far…
	Slide 3: So far…
	Slide 4: Robot learning
	Slide 5: Today…
	Slide 6: Decision making in deterministic systems
	Slide 7: Decision making in deterministic systems
	Slide 8: Decision making in deterministic systems
	Slide 9: Decision making in deterministic systems
	Slide 10: Principle of optimality
	Slide 11: Principle of optimality
	Slide 12: Principle of optimality
	Slide 13: Principle of optimality (deterministic)
	Slide 14: How to apply principal of optimality
	Slide 15: How to apply principal of optimality
	Slide 16: Dynamic programming (deterministic)
	Slide 17: Dynamic programming (deterministic)
	Slide 18: Dynamic programming (deterministic)
	Slide 19: Dynamic programming (deterministic)
	Slide 20: Dynamic programming (deterministic)
	Slide 21: Dynamic programming (deterministic)
	Slide 22: Dynamic programming (deterministic)
	Slide 23: Comments
	Slide 24: Comments
	Slide 25: Comments
	Slide 26: Comments
	Slide 27: Comments
	Slide 28: Today…
	Slide 29: Decision making in stochastic systems
	Slide 30: Principle of optimality (stochastic)
	Slide 31: Dynamic programming (stochastic)
	Slide 32: Comments
	Slide 33: Today…
	Slide 34: Markov decision processes (MDP)
	Slide 35: Infinite horizon MDPs
	Slide 36: Infinite horizon MDPs
	Slide 37: An example MDP
	Slide 38
	Slide 39: Another example MDP
	Slide 40
	Slide 41: Not that easy!
	Slide 42: Infinite horizon MDPs
	Slide 43: Partially observable MDPs
	Slide 44: Today…
	Slide 45: Value functions
	Slide 46: Bellman equations
	Slide 47: Bellman equations
	Slide 48: Value iteration
	Slide 49: Value iteration
	Slide 50: Policy iteration
	Slide 51: Value iteration vs policy iteration
	Slide 52: Today…
	Slide 53: Next time…

